РЕЗУЛЬТАТИ ОЦІНКИ ІМУННОГО СТАТУСУ У ДІТЕЙ З РАС: ІМУНОДЕФІЦИТ, АСОЦІЙОВАНИЙ З ГЕНЕТИЧНИМ ДЕФІЦИТОМ ФОЛАТНОГО ЦИКЛУ

  • Dmytro Maltsev Experimental and Clinical Medicine Institute at the O.O. Bohomolets National Medical University
Keywords: natural killers, natural killer T cells, cytotoxic T lymphocytes, myeloperoxidase, homocysteine

Abstract

Introduction. The results of the last 5 meta-analyzes of randomized controlled clinical trials indicate an association of genetically determined deficiency of folate cycle enzymes (GDFC) and autism spectrum disorders (ASD) in children. There have been reports of an association of ASD with immunodeficiency disease and signs of immune dysregulation, as well as immunedependent mechanisms of CNS damage in children with ASD.

The aim of the study: to conduct a comprehensive analysis of immune status in children with ASD associated with GDFC, due to specific biochemical disorders and immune-dependent clinical manifestations.

Materials and methods. Medical data of 225 children aged 2 to 9 years with GDFC, in which clinical manifestations of ASD (183 boys and 42 girls) were noted, were retrospectively analyzed. The diagnosis of PAS was made by child psychiatrists according to the criteria of DSM-IV-TR (Diagnostic and Statistical Manual of mental disorders) and ICD-10 (The International Statistical Classification of Diseases and Related Health Problems) (study group; SG). The control group (CG) included 51 mentally healthy children (37 boys and 14
girls) of similar age distribution, who did not suffer from GDFC and ASD.
Pathogenic polymorphic variants of folate cycle genes were determined by restriction PCR (Sinevo, Ukraine).
Immunological examination included the study of the subpopulation composition of lymphocytes using laser flow cytofluorimetry (cytofluorimeter Epics Xl, USA) and the method of indirect immunofluorescence with monoclonal antibodies to CD-markers with two or three CD (CD19+CD3-, CD3+CD4+, CD3+ CD8+, CD3—CD16+CD56+, CD3+CD16+CD56+) (Beckman Coulter reagents, USA). Phagocytosis was assessed by the activity of myeloperoxidase (flow cytofluorimetry) and NADP oxidase (HCT test). Serum concentrations of immunoglobulins
of the main classes (M, G, A) were determined by the results of solid-phase ELISA. The concentration of IgE, IgD and IgG subclasses (IgG1, IgG2, IgG3, IgG4) in serum was measured by solid-phase ELISA (VectorBEST, RF; MDI Limbach Berlin GmbH, Germany).
To determine the probability of differences between indicators in the observation groups used Student’s parametric T-test with a confidence probability p and non-parametric criterion – the number of Z signs according to Urbach Yu.V. To study the associations between the studied indicators, the odds ratio (OR) and the 95% confidence interval (95% SI) were used.
The research was performed as a fragment of research work commissioned by the Ministry of Health of Ukraine (ж state registration 0121U107940).

Results and discussion. Deficiency of NK cells was observed in 65%, NKT cells – in 73%, CD8+ cytotoxic Tlymphocytes – in 49%, myeloperoxidase – in 39%, and dysimmunoglobulinemia – in 37% of cases among patients with SG (p<0,05; Z<Z0.05). The association of the main immunological disorders (deficiencies of NK-, NKTcells, cytotoxic T-lymphocytes, myeloperoxidase) and biochemical disorders in GDFC – hyperhomocysteinemia, deficiencies of vitamins B6, B12, D3, folic acid and signs of mitochondrial dysfunction is shown. The association of identified immune dysfunction with immune-dependent clinical manifestations has also been demonstrated.

Conclusions. The obtained data allow us to identify a new primary immunodeficiency – immunodeficiency associated with GDFC.

Downloads

Download data is not yet available.

References

Abe I., Shirato K., Hashizume Y. Folatedeficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats // Environ Health Prev. Med. – 2013. – Vol. 18(1). – P. 78–84.

Ashwood P., Corbett B.A., Kantor A. et al. In search of cellular immunophenotypes in the blood of children with autism // PLoS One. – 2011. – Vol. 6(5). – e19299.

Bagheri-Hosseinabadi Z., Imani D., Yousefi H., Abbasifard M. MTHFR gene polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis based on 16 studies // Clin. Rheumatol. – 2020. – Vol. 39(8). – P. 2267–2279.

Bhatnagar N., Wechalekar A., McNamara C. Pancytopenia due to severe folate deficiency // Intern. Med. J. – 2012. – Vol. 42(9). – P. 1063–1064.

Binstock T. Intra-monocyte pathogens delineate autism subgroups // Med. Hypotheses. – 2001. – Vol. 56(4). – P. 523–531.

Brimberg L., Sadiq A., Gregersen P.K., Diamond B. Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder // Mol. Psychiatry. – 2013. – Vol. 18(11). – P. 1171–1177.

Chen F., Wen T., Lv Q., Liu F. Associations between Folate Metabolism Enzyme Polymorphisms and Lung Cancer: A Meta-Analysis // Nutr. Cancer. – 2020. – Vol. 72(7). – P. 1211–1218.

Chen L., Shi X.J., Liu H. et al. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109) // Transl. Psychiatry. – 2021. – Vol. 11(1). – P. 15.

Courtemanche C., Elson-Schwab I., Mashiyama S.T. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro // J. Immunol. – 2004. –Vol. 173(5). – P. 3186–3192.

Crawley J.N., Heyer W.D., LaSalle J.M. Autism and Cancer Share Risk Genes, Pathways, and Drug Targets // Trends Genet. – 2016. – Vol. 32(3). – P. 139–146.

de Magistris L., Picardi A., Siniscalco D. et al. Antibodies against food antigens in patients with autistic spectrum disorders // Biomed. Res. Int. – 2013. – Vol. 2013. – P. 729349.

Dimitroulas T., Sandoo A., Hodson J. et al. Associations between asymmetric dimethylarginine, homocysteine, and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism (rs1801133) in rheumatoid arthritis // Scand. J. Rheumatol. – 2016. – Vol. 45(4). – P. 267–273.

Enstrom A.M., Lit L., Onore C.E. et al. Altered gene expression and function of peripheral blood natural killer cells in children with autism // Brain. Behav. Immun. – 2009. – Vol. 23(1). – P. 124–133.

Frye R.E., Sequeira J.M., Quadros E.V. et al. Cerebral folate receptor autoantibodies in autism spectrum disorder // Mol. Psychiatry. – 2013. – Vol. 18(3). – P. 369–381.

Furlano R.I., Anthony A., Day R. et al. Colonic CD8 and gamma delta T-cell infiltration with epithelial damage in children with autism // J.Pediatr. – 2001. – Vol. 138(3). – P. 366–372.

Gazit Y., Mory A., Etzioni A. et al. Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature // J. Clin. Immunol. – 2010. – Vol. 30(2). – P. 308–313.

Grimbacher B., Dutra A.S., Holland S.M. et al. Analphoid marker chromosome in a patient with hyper-IgE syndrome, autism, and mild mental retardation // Genet. Med. – 1999. – Vol. 1(5). – P. 213–218.

Hayes B., Stanley J., Peppers B.P. COVID-19 Recurrence Without Seroconversion in a Patient With Mannose-Binding Lectin Deficiency // Allergy Rhinol (Providence). – 2021. – Vol. 12. – P. 21526567211024140.

Heuer L., Ashwood P., Schauer J. et al. Reduced Levels of Immunoglobulin in Children With Autism Correlates With Behavioral Symptoms // Autism. Res. – 2008. – Vol. 1(5). – P. 275–283.

Hughes H.K., Ashwood P. Anti-Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders // Front. Psychiatry. – 2018. – Vol. 26(9). – P. 627. doi: 10.3389/fpsyt.2018.00627.

Hughes H.K., Ko E.M., Rose D., Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders // Front Cell Neurosci. – 2018. – Vol. 12. – P. 405. doi: 10.3389/fncel.2018.00405.

Isung J., Williams K., Isomura K. et al. Association of Primary Humoral Immunodeficiencies With Psychiatric Disorders and Suicidal Behavior and the Role of Autoimmune Diseases // JAMA Psychiatry. – 2020. – Vol. 77(11). – P. 1147–1154.

Jefferson T., Price D., Demicheli V. et al. Unintended events following immunization with MMR: a systematic review // Vaccine. – 2003. – Vol. 21(25-26). – P. 3954–3960.

JyonouchiHYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed/?term=Jyonouchi%20H%5bAuthor%5d&cauthor=true&cauthor_uid=22226452” H., GengHYPERLINK“ h t t p : / / w w w . n c b i . n l m . n i h . g o v /pubmed/?term=Geng%20L%5bAuthor%5d&cauthor=true&cauthor_uid=22226452”L., StreckHYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed/?term=Streck%20DL%5bAuthor%5d&cauthor=true&cauthor_uid=22226452” D.L., TorunerHYPERLINK “ h t t p : / / w w w . n c b i . n l m . n i h . g o v /pubmed/?term=Toruner%20GA%5bAuthor%5d&cauthor=true&cauthor_uid=22226452” G.A. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study // J. HYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed/22226452”NeuroinflammationHYPERLINK «http://www.ncbi.nlm.nih.gov/pubmed/22226452». – 2012. – Vol. 9. – P. 4.

Lau N.M., Green P.H., Taylor A.K. et al. Markers of Celiac Disease and Gluten Sensitivity in Children with Autism // PLoS One. – 2013. – Vol. 8(6). – e66155.

Li M., Tang Y., Zhao E.Y. et al. Relationship between MTHFR gene polymorphism and susceptibility to bronchial asthma and glucocorticoid efficacy in children // Zhongguo Dang Dai Er Ke Za Zhi. – 2021. – Vol. 23(8). – P. 802–808.

Li Y., Qiu S., Shi J. et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis // BMC Pediatr. – 2020. – Vol. 20(1). – P. 449.

Liao P., Soong T.W. CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency // Pflugers Arch. – 2010. – Vol. 460(2). – P. 353–359.

Mao N., Chen J., Wang J. et al. Correlations of Methylenetetrahydrofolate Reductase Gene Polymorphism and Genomic DNA Hypomethylation Level with Ankylosing Spondylitis // Zhongguo Yi Xue Ke Xue Yuan Xue Bao. – 2020. – Vol. 42(3). – P. 307–312.

Matarazzo E.B. Treatment of late onset autism as a consequence of probable autommune processes related to chronic bacterial infection // World J. Biol. Psychiatry. – 2002. – Vol. 3(3). – P. 162–166.

Mead J., Ashwood P. Evidence supporting an altered immune response in ASD // Immunol. Lett. – 2015. – Vol. 163(1). – P. 49-55.

Melamed I.R., Heffron M., Testori A, Lipe K. A pilot study of high-dose intravenous immunoglobulin 5% for autism: Impact on autism spectrum and markers of neuroinflammation // Autism Res. – 2018. – Vol. 11(3). – P. 421–433.

Mohammad N.S., Shruti P.S., Bharathi V. et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders // Psychiatr. Genet. – 2016. – Vol. 26(6). – P. 281–286.

Naghibalhossaini F., Ehyakonandeh H., Nikseresht A., Kamali E. Association Between MTHFR Genetic Variants and Multiple Sclerosis in a Southern Iranian Population // Int. J. Mol. Cell. Med. – 2015. – Vol. 4(2). – P. 87–93.

Nauseef W.M. Diagnostic assays for myeloperoxidase and myeloperoxidase deficiency // Methods Mol. Biol. – 2014. – Vol. 1124. – P. 537–546.

Nayeri T., Sarvi S., Moosazadeh M. et al. Relationship between toxoplasmosis and autism: A systematic review and meta-analysis // Microb. Pathog. – 2020 – Vol. 147. – P. 104434.

Nicolson G.L., Gan R., Nicolson N.L., Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders // J. Neurosci Res. – 2007. – Vol. 85(5). – P. 1143–1148.

Noriega D.B., Savelkoul H.F. Immune dysregulation in autism spectrum disorder // Eur. J. Pediatr. – 2014. – Vol. 173(1). – P. 33–43.

O’Keeffe J., Gately C.M., Counihan T. et al. T-cells expressing natural killer (NK) receptors are altered in multiple sclerosis and responses to alpha-galactosylceramide are impaired // J. Neurol. Sci. – 2008. – Vol. 275(1-2). – P. 22–28.

Partearroyo T., Úbeda N., Montero A. Vitamin B(12) and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats // Nutrients. – 2013. – Vol. 5(12). – P. 4836–4848.

Pu D., Shen Y., Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis // Autism Res. – 2013. – Vol. 6(5). – P. 384–392.

Puangpetch A., Suwannarat P., Chamnanphol M. et al. Significant Association of HLA-B Alleles and Genotypes in Thai Children with Autism Spectrum Disorders: A Case-Control Study // Dis. Markers. 2015. – Vol. 2015. – P.724935.

Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility // Metab. Brain Dis. – 2016. – Vol. 31(4). – P. 727–735.

ReinertHYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed?term=Reinert%20P%5bAuthor%5d&cauthor=true&cauthor_uid=5078364” P., Moulias R., Goust J.M. Demonstration of cellular immunity deficiency limited to measles virus in 20 cases of subacute sclerosing leukoencephalitis // Arch. Fr. Pediatr. – 1972. – Vol. 29(6). – P. 655–665.

Russo A.J., Krigsman A., Jepson B., Wakefield A. Low serum myeloperoxidase in autistic children with gastrointestinal disease // Clinical and Experimental Gastroenterology. – 2009. – Vol. 2. – P. 85–94.

Sadeghiyeh T., Dastgheib S.A., Mirzaee-Khoramabadi K. et al. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis // Asian J Psychiatr. – 2019. – Vol. 46. – P. 54–61.

Saghazadeh A., Ataeinia B., Keynejad K. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude // J. Psychiatr. Res. – 2019. – Vol. 115. – P. 90–102.

Sakamoto A., Moriuchi H., Matsuzaki J. et al. Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit // Brain. Dev. – 2015. – Vol. 37(2). – P. 200–205.

Salehi Sadaghiani M., Aghamohammadi A., Ashrafi M.R. et al. Autism in a child with common variable immunodeficiency // Iran. J. Allergy Asthma Immunol. – 2013. – Vol. 12(3). – P. 287–289.

Santaella M.L., Varela Y., Linares N., Disdier O.M. Prevalence of autism spectrum disorders in relatives of patients with selective immunoglobulin A deficiency // P. R. Health. Sci J. – 2008. – Vol. 27(3). – P. 204–208.

Shin S., Yu N., Choi J.R. et al. Routine chromosomal microarray analysis is necessary in Korean patients with unexplained developmental delay/mental retardation/autism spectrum disorder // Ann. Lab. Med. – 2015. – Vol. 35(5). – P. 510–518.

Torres A.R., Westover J.B., Gibbons C. et al. Activating killer-cell immunoglobulin-like receptors (KIR) and their cognate HLA ligands are significantly increased in autism // Brain. Behav. Immun. – 2012. – Vol. 26(7). – P. 1122–1227.

Troen A.M., Mitchell B., Sorensen B. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women // J. Nutr. – 2006. – Vol. 136(1). – P. 189–194.

Van der Weyden M.B., Hayman R.J. et al. Folate-deficient human lymphoblasts: changes in deoxynucleotide metabolism and thymidylate cycle activities // Eur. J. Haematol. – 1991. – Vol. 47(2). – P. 109–114.

Villanueva J., Lee S., Giannini E.H. et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome // Arthritis Res. Ther. – 2005. – Vol. 7(1). – R30–37.

Vinck A., Verhagen M.M., Gerven Mv. Cognitive and speech-language performance in children with ataxia telangiectasia // Dev. Neurorehabil. – 2011. – Vol. 14(5). – P. 315–322.

Vojdani A., Mumper E., Granpeesheh D. et al. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15 // J Neuroimmunol. – 2008. – Vol. 205(1-2). – P. 148–154.

Warren R.P., Burger R.A., Odell D. et al. Decreased plasma concentrations of the C4B complement protein in autism // Arch. Pediatr. Adolesc. Med. – 1994. – Vol. 148(2). – P. 180–183.

Warren R.P., Margaretten N.C., Foster A. Reduced natural killer cell activity in autism // J. Am. Acad. Child. Adolesc. Psycho1. – 1987. – Vol. 26. – P. 333–335.

Warren R.P., Yonk L.J., Burger R.A. et al. Deficiency of suppressor inducer T cells in autism // Immunol. Invest. – 1990. – Vol. 19. – P. 245–251.

Wasilewska J., Kaczmarski M., Stasiak-Barmuta A. et al. Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old // Arch. Med. Sci. – 2012. – Vol. 8(2). – P. 324–331.

Watanabe N., Gao S., Wu Z, Batchu S. et al. Analysis of deficiency of adenosine deaminase 2 pathogenesis based on single-cell RNA sequencing of monocytes // J. Leukoc. Biol. – 2021. – Vol. 110(3). – P. 409–424.

Xu G., Snetselaar L.G., Jing J. et al. Association of Food Allergy and Other Allergic Conditions With Autism Spectrum Disorder in Children // Allergy Asthma Clin Immunol. – 2019. – Vol. 15. – P. 84.

Yonk L.J., Warren R.P., Burger R.A. et al. CD4+helper T cell depression in autism // Immunol. Lett – 1990. – Vol. 25. – P. 341–345.

Published
2022-05-30
How to Cite
Maltsev, D. (2022). РЕЗУЛЬТАТИ ОЦІНКИ ІМУННОГО СТАТУСУ У ДІТЕЙ З РАС: ІМУНОДЕФІЦИТ, АСОЦІЙОВАНИЙ З ГЕНЕТИЧНИМ ДЕФІЦИТОМ ФОЛАТНОГО ЦИКЛУ. Immunology and Allergology: Science and Practice, (4), 5-22. https://doi.org/10.37321/immunology.2021.4-01